Knowledge Extraction From a Class of Support Vector Machines: A Fuzzy Logic Approach

نویسندگان

  • Shahaf Duenyas
  • Michael Margaliot
چکیده

Support vector machines (SVMs) proved to be highly efficient computational tools in various classification tasks. However, the knowledge learned by an SVM is encoded in a long list of parameter values, and it is not easy to comprehend what the SVM is actually computing. We show that certain types of SVMs are mathematically equivalent to a specific fuzzy–rule base, the fuzzy all–permutations rule base (FARB). The equivalent FARB provides a symbolic representation of the SVM functioning. This leads to a new approach for knowledge extraction from SVMs. Several examples demonstrate the effectiveness of this approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Knowledge Extraction from Support Vector Machines: A Fuzzy Logic Approach

Support vector machines (SVMs) proved to be highly efficient computational tools in various classification tasks. However, SVMs are nonlinear classifiers and the knowledge learned by an SVM is encoded in a long list of parameter values, making it difficult to comprehend what the SVM is actually computing. We show that certain types of SVMs are mathematically equivalent to a specific fuzzy–rule ...

متن کامل

MULTI CLASS BRAIN TUMOR CLASSIFICATION OF MRI IMAGES USING HYBRID STRUCTURE DESCRIPTOR AND FUZZY LOGIC BASED RBF KERNEL SVM

Medical Image segmentation is to partition the image into a set of regions that are visually obvious and consistent with respect to some properties such as gray level, texture or color. Brain tumor classification is an imperative and difficult task in cancer radiotherapy. The objective of this research is to examine the use of pattern classification methods for distinguishing different types of...

متن کامل

A QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES

Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only  considers both accuracy and generalization criteria in a single objective fu...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

A Near Optimal Approach in Choosing The Appropriate Physical Machines for Live Virtual Machines Migration in Cloud Computing

Migration of Virtual Machine (VM) is a critical challenge in cloud computing. The process to move VMs or applications from one Physical Machine (PM) to another is known as VM migration. In VM migration several issues should be considered. One of the major issues in VM migration problem is selecting an appropriate PM as a destination for a migrating VM. To face this issue, several approaches are...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011